RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Impacts of Logging-Associated Compaction on Forest Soils: A Meta-Analysis

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Impacts of Logging-Associated Compaction on Forest Soils: A Meta-Analysis

0 Datasets

0 Files

English
2021
Frontiers in Forests and Global Change
Vol 4
DOI: 10.3389/ffgc.2021.780074

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Michaela Dippold
Michaela Dippold

Institution not specified

Verified
Meisam Nazari
Mohammad Eteghadipour
Mohsen Zarebanadkouki
+4 more

Abstract

Soil compaction associated with mechanized wood harvesting can long-lastingly disturb forest soils, ecosystem function, and productivity. Sustainable forest management requires precise and deep knowledge of logging operation impacts on forest soils, which can be attained by meta-analysis studies covering representative forest datasets. We performed a meta-analysis on the impact of logging-associated compaction on forest soils microbial biomass carbon (MBC), bulk density, total porosity, and saturated hydraulic conductivity (K sat ) affected by two management factors (machine weight and passage frequency), two soil factors (texture and depth), and the time passed since the compaction event. Compaction significantly decreased soil MBC by −29.5% only in subsoils (>30 cm). Overall, compaction increased soil bulk density by 8.9% and reduced total porosity and K sat by −10.1 and −40.2%, respectively. The most striking finding of this meta-analysis is that the greatest disturbance to soil bulk density, total porosity, and K sat occurs after very frequent (>20) machine passages. This contradicts the existing claims that most damage to forest soils happens after a few machine passages. Furthermore, the analyzed physical variables did not recover to the normal level within a period of 3–6 years. Thus, altering these physical properties can disturb forest ecosystem function and productivity, because they play important roles in water and air supply as well as in biogeochemical cycling in forest ecosystems. To minimize the impact, we recommend the selection of suitable logging machines and decreasing the frequency of machine passages as well as logging out of rainy seasons especially in clayey soils. It is also very important to minimize total skid trail coverage for sustainable forest management.

How to cite this publication

Meisam Nazari, Mohammad Eteghadipour, Mohsen Zarebanadkouki, Mohammad Ghorbani, Michaela Dippold, Nataliya Bilyera, Kazem Zamanian (2021). Impacts of Logging-Associated Compaction on Forest Soils: A Meta-Analysis. Frontiers in Forests and Global Change, 4, DOI: 10.3389/ffgc.2021.780074.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Frontiers in Forests and Global Change

DOI

10.3389/ffgc.2021.780074

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access