RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. <i>In-situ</i> transmission electron microscopy study of oxygen vacancy ordering and dislocation annihilation in undoped and Sm-doped CeO2 ceramics during redox processes

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2016

<i>In-situ</i> transmission electron microscopy study of oxygen vacancy ordering and dislocation annihilation in undoped and Sm-doped CeO2 ceramics during redox processes

0 Datasets

0 Files

en
2016
Vol 120 (21)
Vol. 120
DOI: 10.1063/1.4971338

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Yong Ding
Yu Chen
Ken C. Pradel
+2 more

Abstract

Ceria (CeO2) based ceramics have been widely used for many applications due to their unique ionic, electronic, and catalytic properties. Here, we report our findings in investigating into the redox processes of undoped and Sm-doped CeO2 ceramics stimulated by high-energy electron beam irradiation within a transmission electron microscope (TEM). The reduced structure with oxygen vacancy ordering has been identified as the CeO1.68 (C-Ce2O3+δ) phase via high-resolution TEM. The reduction of Ce4+ to Ce3+ has been monitored by electron energy-loss spectroscopy. The decreased electronic conductivity of the Sm-doped CeO2 (Sm0.2Ce0.8O1.9, SDC) is revealed by electron holography, as positive electrostatic charges accumulated at the surfaces of SDC grains under electron beam irradiation, but not at CeO2 grains. The formation of the reduced CeO1.68 domains corresponds to lattice expansion compared to the CeO2 matrix. Therefore, the growth of CeO1.68 nuclei builds up strain inside the matrix, causing annihilation of dislocations inside the grains. By using in-situ high-resolution TEM and a fast OneView camera recording system, we investigated dislocation motion inside both CeO2 and SDC grains under electron beam irradiation. The dislocations prefer to dissociate into Shockley partials bounded by stacking faults. Then, the partials can easily glide in the {111} planes to reach the grain surfaces. Even the Lomer-Cottrell lock can be swept away by the phase change induced strain field. Our results revealed the high mobility of dislocations inside CeO2 and SDC grains during their respective redox processes.

How to cite this publication

Yong Ding, Yu Chen, Ken C. Pradel, Meilin Liu, Zhong Lin Wang (2016). <i>In-situ</i> transmission electron microscopy study of oxygen vacancy ordering and dislocation annihilation in undoped and Sm-doped CeO2 ceramics during redox processes. , 120(21), DOI: https://doi.org/10.1063/1.4971338.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1063/1.4971338

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access