0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessGlutathione reductase (GR; EC 1.6.4.2) is a key NADPH-dependent flavo-protein oxidoreductase which can catalyze the oxidized glutathione (GSSG) to reduced glutathione (GSH) to protect plant cells from oxidative damage induced by Reactive oxygen species (ROS) burst. To investigate the biochemical characteristics and functional divergence of Populus GR family, three GR genes (PtGR1.1/1.2/2) were cloned from Populus trichocarpa and their biochemical characteristics were analyzed in this study. All the three genes were expressed in root, stem, leaf and bud, and the expression of PtGR genes were general upregulated under salicylic acid and alamethicin treatment. PtGR1.1 and PtGR1.2 were localized in cytoplasm, while PtGR2 was in chloroplast. The three PtGR proteins showed different enzymatic activities, apparent kinetic characteristic and thermal stability profiles. However, they have similar bivalent metal ions (Cu2+, Cd2+, Zn2+ and Pb2+) sensitivity and optimum pH profiles. Our study sheds light on a comprehensive information of glutathione reductase family in P. trichocarpa, and proved PtGR genes play critical roles when suffering different stresses.
Haijing Liu, Xin Wang, Zhi‐Ling Yang, Lin-Ling Ren, Tingting Qian (2020). Identification and biochemical characterization of the glutathione reductase family from Populus trichocarpa. Plant Science, 294, pp. 110459-110459, DOI: 10.1016/j.plantsci.2020.110459.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Plant Science
DOI
10.1016/j.plantsci.2020.110459
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access