0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBackground Heavy metals in water pose grave risks to human health and the environment, necessitating the development of cost-effective and sustainable materials to combat heavy metal pollution in water. Natural and waste-based materials have received exceptional attention among researchers in removing heavy metals. Methods The efficient hydroxyapatite (HAp) and its composites have been utilized as adsorbents and membrane materials for the efficient elimination of heavy metals from wastewater, capitalizing on their low cost, eco-friendliness, thermal stability, and efficiency. Significant findings The review commences with a brief highlight and comparison of methods of heavy metal removal. Then, it delves into HAp properties, synthesis methods, and the influence of preparation conditions on HAp characteristics. The paper evaluates heavy metal adsorption in terms of equilibrium conditions, isotherms, and kinetics. While adsorption is effective for heavy metal removal, it can be labor-intensive for regenerating adsorbents and costly for large-scale applications. Therefore, the paper discusses the potential of HAp-based membranes fabricated via electrospinning and phase inversion techniques. It explores the characteristics and heavy metal removal performance of HAp membranes. In conclusion, the review discusses limitations and future directions for HAp-based membranes. This article serves as a valuable resource for understanding the capabilities of HAp-based adsorbents and membranes for sustainable heavy metal removal.
Filzah Hazirah Jaffar, Mohd Hafiz Dzarfan Othman, Nurul Jannah Ismail, Mohd Hafiz Puteh, Tonni Agustiono Kurniawan, Suriani Abu Bakar, Huda Abdullah (2024). Hydroxyapatite-based materials for adsorption, and adsorptive membrane process for heavy metal removal from wastewater: Recent progress, bottleneck and opportunities. Journal of the Taiwan Institute of Chemical Engineers, 164, pp. 105668-105668, DOI: 10.1016/j.jtice.2024.105668.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Journal of the Taiwan Institute of Chemical Engineers
DOI
10.1016/j.jtice.2024.105668
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access