Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Hydrazide- and Diazole-Linked Covalent Organic Frameworks and Their Water Harvesting Properties

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2022

Hydrazide- and Diazole-Linked Covalent Organic Frameworks and Their Water Harvesting Properties

0 Datasets

0 Files

en
2022
DOI: 10.26434/chemrxiv-2022-2swtc

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Omar M Yaghi
Omar M Yaghi

University of California, Berkeley

Verified
Ha L. Nguyen
Cornelius Gropp
Anna Möckel
+3 more

Abstract

We report a retrosynthetic strategy and its implementation to making covalent organic frameworks (COFs) with irreversible hydrazide and diazole (oxadiazole and thiadiozole) linkages. This involved the synthesis of a series of 2D and 3D hydrazine-linked frameworks, followed by their oxidation and dehydrative cyclization. Each linkage synthesis and functional group transformation—hydrazine, hydrazide, oxadiazole, and thiadia-zole—was evidenced by 15N multi-CP-MAS NMR. In addition, the isothermal water uptake profiles of these frameworks were studied, leading to the discovery that one hydrazide-linked COF is suitable for water harvest-ing from air in arid conditions. These COFs displayed characteristic S-shaped water sorption profiles, a steep pore-filling step below 18% relative humidity at 25 °C, and a total uptake capacity of 0.45 g g–1 at P/Psat = 0.95. In addition, a total of ten 2D and 3D structures with various such linkages were studies for their affinity to water. We found that even small changes made on the molecular level can lead to major differences in the water isotherm profiles and therefore pointing to the utility of water sorption analysis as a complementary analytical tool to study linkage transformations.

How to cite this publication

Ha L. Nguyen, Cornelius Gropp, Anna Möckel, Nikita Hanikel, Alicia Lund, Omar M Yaghi (2022). Hydrazide- and Diazole-Linked Covalent Organic Frameworks and Their Water Harvesting Properties. , DOI: https://doi.org/10.26434/chemrxiv-2022-2swtc.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2022

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.26434/chemrxiv-2022-2swtc

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access