0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis research developed smart integrated hybrid renewable systems for small energy communities and applied them to a real system to achieve energy self-sufficiency and promote sustainable decentralized energy generation. It compares stand-alone (SA) and grid-connected (GC) configurations using a developed optimized mathematical model and data-driven optimization, with economic analysis of various renewable combinations (PV, Wind, PHS, BESS, and Grid) to search for the optimal solution. Four cases were developed: two stand-alone (SA1: PV + Wind + PHS, SA2: PV + Wind + PHS + BESS) and two grid-connected (GC1: PV + PHS + Grid, GC2: Wind + PHS + Grid). GC2 shows the most economical with stable cash flow (−€123.2 annually), low CO2 costs (€367.2), and 91.7% of grid independence, requiring 125 kW of installed power. While GC options had lower initial investments (between €157k to €205k), the SA configurations provided lower levelized costs of energy (LCOE) ranging from €0.039 to €0.044/kWh. The integration of pumped hydropower storage enhances energy independence, supporting peak loads for up to two days with a storage capacity of 2.17 MWh.
João S. T. Coelho, Modesto Pérez‐Sánchez, Oscar Coronado-hernández, Francisco-Javier Sánchez-Romero, Aonghus McNabola, Helena M. Ramos (2024). Hybrid Renewable Systems for Small Energy Communities: What Is the Best Solution?. Applied Sciences, 14(21), pp. 10052-10052, DOI: 10.3390/app142110052.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Applied Sciences
DOI
10.3390/app142110052
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access