0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAerogels, due to their unique interconnected 3D networks, and large number of air-filled pores, extend the structural characteristics and physicochemical properties of the nanoscale to the macro level. However, aerogels made from a single component can hardly meet the needs of multifunctional energy harvesting/supply situations. Here, a BaTiO3-based hybrid aerogel (BTO HA) with 3D network structure was prepared. When the BTO HA is used as the electrode of triboelectric nanogenerator (BTO HA-TENG), high electrical output performances were obtained, which is due to the synergistic effect of solid-solid contact electrifications between the two electrification layers, the gas-solid contact electrifications between the inner surface of BTO HA and the air filled in the aerogel pores, and the piezoelectricity of the doped BaTiO3 nanoparticles. The BTO HA-TENG exhibited excellent fatigue resistance and structural stability after 12,000 cycles of alternatively contact/separation tests, and it can not only provide stable power supply for commercial capacitors, drive small mobile electronic devices but also can be used as a self-powered sensor to monitor human motion signals. Compared with traditional TENGs depending on surface charge transfer, the BTO HA-TENG exhibited its unique advantage that it can generate and transfer triboelectric charges by 3D volume, which boost TENGs' electrical output performances.
Tianci Huang, Yong Long, Bingqi Zhao, Qilin Hua, Zhong Lin Wang, Weiguo Hu (2023). Hybrid Aerogel Triboelectric Nanogenerator Based on the Synergistic Effect of Solid–Solid/Gas–Solid Triboelectricity and Piezoelectric Polarization. , 15(22), DOI: https://doi.org/10.1021/acsami.3c02969.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsami.3c02969
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access