Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. How Water Can Affect Keratin: Hydration‐Driven Recovery of Bighorn Sheep ( <i>Ovis Canadensis</i> ) Horns

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

How Water Can Affect Keratin: Hydration‐Driven Recovery of Bighorn Sheep ( <i>Ovis Canadensis</i> ) Horns

0 Datasets

0 Files

English
2019
Advanced Functional Materials
Vol 29 (27)
DOI: 10.1002/adfm.201901077

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Robert O. Ritchie
Robert O. Ritchie

University of California, Berkeley

Verified
Wei Huang
Alireza Zaheri
Wen Yang
+4 more

Abstract

Keratin is one of the most common structural biopolymers exhibiting high strength, toughness, and low density. It is found in various tissues such as hairs, feathers, horns, and hooves with various functionalities. For instance, horn keratin absorbs a large amount of energy during intraspecific fights. Keratinized tissues are permanent tissues because of their basic composition consisting of dead keratinized cells that are not able to remodel or regrow once broken or damaged. The lack of a self‐healing mechanism presents a problem for horns, as they are under continued high risk from mechanical damage. In the present work, it is shown for the first time that a combination of material architecture and a water‐assisted recovery mechanism, in the horn of bighorn sheep, endows them with shape and mechanical property recoverability after being subjected to severe compressive loading. Moreover, the effect of hydration is unraveled, on the material molecular structure and mechanical behavior, by means of synchrotron wide angle X‐ray diffraction, Fourier transform infrared spectroscopy, nanoindentation, and in situ and ex situ tensile tests. The recovery and remodeling mechanism is anisotropic and quite distinct to the self‐healing of living tissue such as bones.

How to cite this publication

Wei Huang, Alireza Zaheri, Wen Yang, David Kisailus, Robert O. Ritchie, Horacio D. Espinosa, Joanna McKittrick (2019). How Water Can Affect Keratin: Hydration‐Driven Recovery of Bighorn Sheep ( <i>Ovis Canadensis</i> ) Horns. Advanced Functional Materials, 29(27), DOI: 10.1002/adfm.201901077.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Advanced Functional Materials

DOI

10.1002/adfm.201901077

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access