RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. High‐Stroke, High‐Output‐Force, Fabric‐Lattice Artificial Muscles for Soft Robots

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

High‐Stroke, High‐Output‐Force, Fabric‐Lattice Artificial Muscles for Soft Robots

0 Datasets

0 Files

English
2023
Advanced Materials
Vol 36 (2)
DOI: 10.1002/adma.202306928

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guoying Gu
Guoying Gu

Shanghai Jiao Tong University

Verified
Dezhi Yang
Miao Feng
Guoying Gu

Abstract

Artificial muscles, providing safe and close interaction between humans and machines, are essential in soft robotics. However, their insufficient deformation, output force, or configurability usually limits their applications. Herein, this work presents a class of lightweight fabric‐lattice artificial muscles (FAMs) that are pneumatically actuated with large contraction ratios (up to 87.5%) and considerable output forces (up to a load of 20 kg, force‐to‐weight ratio of over 250). The developed FAMs consist of a group of active air chambers that are zigzag connected into a lattice through passive connecting layers. The geometry of these fabric components is programmable to convert the in‐plane lattice of FAMs into out‐of‐plane configurations (e.g., arched and cylindrical) capable of linear/radial contraction. This work further demonstrates that FAMs can be configured for various soft robotic applications, including the powerful robotic elbow with large motion range and high load capability, the well‐fitting assistive shoulder exosuit that can reduce muscle activity during abduction, and the adaptive soft gripper that can grasp irregular objects. These results show the unique features and broad potential of FAMs for high‐performance soft robots.

How to cite this publication

Dezhi Yang, Miao Feng, Guoying Gu (2023). High‐Stroke, High‐Output‐Force, Fabric‐Lattice Artificial Muscles for Soft Robots. Advanced Materials, 36(2), DOI: 10.1002/adma.202306928.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Advanced Materials

DOI

10.1002/adma.202306928

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access