RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. High‐Stretchability, Ultralow‐Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

High‐Stretchability, Ultralow‐Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines

0 Datasets

0 Files

English
2022
Advanced Materials
Vol 34 (32)
DOI: 10.1002/adma.202203650

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guoying Gu
Guoying Gu

Shanghai Jiao Tong University

Verified
Zequn Shen
Zhilin Zhang
Ningbin Zhang
+6 more

Abstract

Highly stretchable strain sensors based on conducting polymer hydrogel are rapidly emerging as a promising candidate toward diverse wearable skins and sensing devices for soft machines. However, due to the intrinsic limitations of low stretchability and large hysteresis, existing strain sensors cannot fully exploit their potential when used in wearable or robotic systems. Here, a conducting polymer hydrogel strain sensor exhibiting both ultimate strain (300%) and negligible hysteresis (<1.5%) is presented. This is achieved through a unique microphase semiseparated network design by compositing poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanofibers with poly(vinyl alcohol) (PVA) and facile fabrication by combining 3D printing and successive freeze-thawing. The overall superior performances of the strain sensor including stretchability, linearity, cyclic stability, and robustness against mechanical twisting and pressing are systematically characterized. The integration and application of such strain sensor with electronic skins are further demonstrated to measure various physiological signals, identify hand gestures, enable a soft gripper for objection recognition, and remote control of an industrial robot. This work may offer both promising conducting polymer hydrogels with enhanced sensing functionalities and technical platforms toward stretchable electronic skins and intelligent robotic systems.

How to cite this publication

Zequn Shen, Zhilin Zhang, Ningbin Zhang, Jinhao Li, Peiwei Zhou, Faqi Hu, Yu Rong, Baoyang Lu, Guoying Gu (2022). High‐Stretchability, Ultralow‐Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines. Advanced Materials, 34(32), DOI: 10.1002/adma.202203650.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

9

Datasets

0

Total Files

0

Language

English

Journal

Advanced Materials

DOI

10.1002/adma.202203650

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access