0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSmall metal clusters can provide improved catalytic activity compared with single metal atoms and larger metal nanoparticles of the same element. The stabilization of metal ensembles of a few atoms is extremely challenging, however, because reductive sintering and oxidative fragmentation are phenomena that often occur at low temperatures in reactive atmospheres. In this regard, the CO oxidation reaction is particularly challenging because CO tends to aggregate noble metals on nonreducible supports, such as SiO2, whereas O2 triggers the formation of (less active) single atoms on reducible supports, such as CeO2. Accordingly, state-of-the-art Pt/CeO2 catalysts undergo severe deactivation under practical CO oxidation conditions in excess of O2. In this contribution, we report a highly active CO oxidation catalyst that is able to overcome both sintering and fragmentation instabilities under conditions that make other alternatives fail. The catalyst is based on small Pt clusters inside K-MFI that benefit from both strong metal/support interactions at defective sites of the zeolite and strong electronic promotion by the support, to attain highly stable, highly active, electron-rich Pt clusters.
Benjamin Bohigues, Isabel Millet, Patricia Concepción, Avelino Avelino, Manuel Moliner, Pedro Serna (2024). Highly Stable Subnanometric Pt Clusters in All Silica K-Doped Zeolites: Implications for the CO Oxidation Reaction. ACS Catalysis, pp. 608-615, DOI: 10.1021/acscatal.4c04758.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
ACS Catalysis
DOI
10.1021/acscatal.4c04758
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access