0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSilicon carbide (SiC), one of the third-generation semiconductor materials with excellent electrical and optoelectronic properties, is ideal for high light-sensing performance. Here, a self-powered SiC ultraviolet (UV) photodetector (PD) is constructed with wider applicability and higher commercialization potential. The great performance of the PD is realized by a remarkable photoinduced dynamic Schottky effect derived from the symbiotic modulation of Schottky and Ohmic contact. Using the pyro-phototronic effect that exists in the N-doped 4H-SiC single crystal PDs, a fast pyroelectric response time of 0.27 s is achieved, which is almost ten times shorter than that obtained from the steady-state signal under UV illumination. The maximal transient photoresponsivity reaches 9.12 nA mW-1 , which is ≈20% higher than the conventional photoelectric signal. Moreover, different regions of the 4H-SiC centimeter-scale chip output distinct signals under UV illumination, demonstrating efficient optical imaging and information transmission capabilities of this device. This work not only reveals the fundamental optoelectronic physics lying in this vital third-generation semiconductor, but also sheds light on its potential photosensing applications for large-scale commercialization.
Yueming Zhang, Yichi Wang, Longfei Wang, Laipan Zhu, Zhong Lin Wang (2022). Highly Sensitive Photoelectric Detection and Imaging Enhanced by the Pyro‐Phototronic Effect Based on a Photoinduced Dynamic Schottky Effect in 4H‐SiC. , 34(35), DOI: https://doi.org/10.1002/adma.202204363.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adma.202204363
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access