RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions

0 Datasets

0 Files

English
2023
Joule
Vol 7 (1)
DOI: 10.1016/j.joule.2022.12.010

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Robert O. Ritchie
Robert O. Ritchie

University of California, Berkeley

Verified
He Li
Boyce S. Chang
Hyunseok Kim
+19 more

Abstract

High-capacity polymer dielectrics that operate with high efficiencies under harsh electrification conditions are essential components for advanced electronics and power systems. It is, however, fundamentally challenging to design polymer dielectrics that can reliably withstand demanding temperatures and electric fields, which necessitate the balance of key electronic, electrical, and thermal parameters. Herein, we demonstrate that polysulfates, synthesized by sulfur(VI) fluoride exchange (SuFEx) catalysis, another near-perfect click chemistry reaction, serve as high-performing dielectric polymers that overcome such bottlenecks. Free-standing polysulfate thin films from convenient solution processes exhibit superior insulating properties and dielectric stability at elevated temperatures, which are further enhanced when ultrathin (∼5 nm) oxide coatings are deposited by atomic layer deposition. The corresponding electrostatic film capacitors display high breakdown strength (>700 MV m−1) and discharged energy density of 8.64 J cm−3 at 150°C, outperforming state-of-the-art free-standing capacitor films based on commercial and synthetic dielectric polymers and nanocomposites.

How to cite this publication

He Li, Boyce S. Chang, Hyunseok Kim, Zongliang Xie, Antoine Lainé, Le Ma, Tianlei Xu, Chongqing Yang, Junpyo Kwon, Steve W. Shelton, Liana M. Klivansky, Virginia Altoé, Bing Gao, Adam Schwartzberg, Zongren Peng, Robert O. Ritchie, Ting Xu, Miquel Salmerón, Ricardo Ruiz, K. Barry Sharpless, Peng Wu, Yi Liu (2023). High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions. Joule, 7(1), pp. 95-111, DOI: 10.1016/j.joule.2022.12.010.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

22

Datasets

0

Total Files

0

Language

English

Journal

Joule

DOI

10.1016/j.joule.2022.12.010

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access