0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSilicon nanowires can be prepared with single-crystal structures, diameters as small as several nanometers and controllable hole and electron doping, and thus represent powerful building blocks for nanoelectronics devices such as field effect transistors. To explore the potential limits of silicon nanowire transistors, we have examined the influence of source-drain contact thermal annealing and surface passivation on key transistor properties. Thermal annealing and passivation of oxide defects using chemical modification were found to increase the average transconductance from 45 to 800 nS and average mobility from 30 to 560 cm2/V·s with peak values of 2000 nS and 1350 cm2/V·s, respectively. The comparison of these results and other key parameters with state-of-the-art planar silicon devices shows substantial advantages for silicon nanowires. The uses of nanowires as building blocks for future nanoelectronics are discussed.
Yi Cui, Zhaohui Zhong, Deli Wang, Wayne U. Wang, Charles M. Lieber (2003). High Performance Silicon Nanowire Field Effect Transistors. Nano Letters, 3(2), pp. 149-152, DOI: 10.1021/nl025875l.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2003
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Nano Letters
DOI
10.1021/nl025875l
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access