Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. High-Performance Pt–Co Nanoframes for Fuel-Cell Electrocatalysis

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

High-Performance Pt–Co Nanoframes for Fuel-Cell Electrocatalysis

0 Datasets

0 Files

en
2020
Vol 20 (3)
Vol. 20
DOI: 10.1021/acs.nanolett.9b05251

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Peidong Yang
Peidong Yang

University of California, Berkeley

Verified
Shouping Chen
Mufan Li
Mengyu Gao
+4 more

Abstract

Pt-based alloy catalysts are promising candidates for fuel-cell applications, especially for cathodic oxygen reduction reaction (ORR) and anodic methanol oxidation reaction (MOR). The rational design of composition and morphology is crucial to promoting catalytic performances. Here, we report the synthesis of Pt-Co nanoframes via chemical etching of Co from solid rhombic dodecahedra. The obtained Pt-Co nanoframes exhibit excellent ORR mass activity in acidic electrolyte, which is as high as 0.40 A mgPt-1 initially and 0.34 A mgPt-1 after 10 000 potential cycles at 0.95 VRHE. Furthermore, their MOR mass activity in alkaline media is up to 4.28 A mgPt-1 and is 4-fold higher than that of commercial Pt/C catalyst. Experimental studies indicate that the weakened binding of intermediate carbonaceous poison contributes to the enhanced MOR behavior. More impressively, the Pt-Co nanoframes also demonstrate remarkable stability under long-term testing, which could be attributed to the negligible electrochemical Co dissolution.

How to cite this publication

Shouping Chen, Mufan Li, Mengyu Gao, Jianbo Jin, M. A. Van Spronsen, Miquel Salmerón, Peidong Yang (2020). High-Performance Pt–Co Nanoframes for Fuel-Cell Electrocatalysis. , 20(3), DOI: https://doi.org/10.1021/acs.nanolett.9b05251.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

7

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acs.nanolett.9b05251

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access