0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe merger of nanoscale building blocks with flexible and/or low cost substrates could enable the development of high-performance electronic and photonic devices with the potential to impact a broad spectrum of applications. Here we demonstrate that high-quality, single-crystal nanowires can be assembled onto inexpensive glass and flexible plastic substrates to create basic transistor and light-emitting diode devices. In our approach, the high-temperature synthesis of single-crystal nanowires is separated from ambient-temperature solution-based assembly to enable the fabrication of single-crystal-like devices on virtually any substrate. Silicon nanowire field-effect transistors were assembled on glass and plastic substrates and display device parameters rivaling those of single-crystal silicon and exceeding those of state-of-the-art amorphous silicon and organic transistors currently used for flexible electronics on plastic substrates. Nanowire transistor devices have been configured as low-threshold logic elements with gain; moreover, the high-performance characteristics are relatively unaffected by operation in a bent configuration or by repeated bending. The generality of this approach is further illustrated with the assembly of gallium nitride nanowire UV-light-emitting diodes on flexible plastic substrates. These results suggest that nanowires could serve as high-performance building blocks for the next of generation lightweight display, mobile computing, and information storage applications.
Michael C. McAlpine, Robin S. Friedman, Song Jin, Keng-hui Lin, Wayne U. Wang, Charles M. Lieber (2003). High-Performance Nanowire Electronics and Photonics on Glass and Plastic Substrates. Nano Letters, 3(11), pp. 1531-1535, DOI: 10.1021/nl0346427.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2003
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Nano Letters
DOI
10.1021/nl0346427
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access