0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTwist-controlled moire superlattices (MS) have emerged as a versatile platform in which to realize artificial systems with complex electronic spectra. Bernal-stacked bilayer graphene (BLG) and hexagonal boron nitride (hBN) form an interesting example of the MS that has recently featured a set of unexpected behaviors, such as unconventional ferroelectricity and electronic ratchet effect. Yet, the understanding of the BLG/hBN MS electronic properties has, at present, remained fairly limited. Here we develop a multi-messenger approach that combines standard magnetotransport techniques with low-energy sub-THz excitation to get insights into the properties of this MS. We show that BLG/hBN lattice alignment results in the emergence of compensated semimetals at some integer fillings of the moire bands separated by van Hove singularities where Lifshitz transition occurs. A particularly pronounced semimetal develops when 8 electrons reside in the moire unit cell, where coexisting high-mobility electron and hole systems feature a strong magnetoresistance reaching 2350 % already at B=0.25 T. Next, by measuring the THz-driven Nernst effect in remote bands, we observe valley splitting, pointing to an orbital magnetization characterized by a strongly enhanced effective g-factor of 340. Last, using THz photoresistance measurements, we show that the high-temperature conductivity of the BLG/hBN MS is limited by electron-electron umklapp processes. Our multi-facet analysis introduces THz-driven magnetotransport as a convenient tool to probe the band structure and interaction effects in vdW materials and provides a comprehension of the BLG/hBN MS.
А. Л. Шилов, M. A. Kashchenko, Pierre A. Pantaleón, M. Kravtsov, Andrei Kudriashov, Zhen Zhan, T. Taniguchi, Kenji Watanabe, Sergey Slizovskiy, Konstantin ‘kostya’ Novoselov, Vladimir I. Fal’ko, F. Guinea, D. A. Bandurin (2023). High-mobility compensated semimetals, orbital magnetization, and umklapp scattering in bilayer graphene moire superlattices. arXiv (Cornell University), DOI: 10.48550/arxiv.2311.05124.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
13
Datasets
0
Total Files
0
Language
English
Journal
arXiv (Cornell University)
DOI
10.48550/arxiv.2311.05124
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access