0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTwist-controlled moiré superlattices (MSs) have emerged as a versatile platform for realizing artificial systems with complex electronic spectra. The combination of Bernal-stacked bilayer graphene (BLG) and hexagonal boron nitride (hBN) can give rise to an interesting MS, which has recently featured a set of unexpected behaviors, such as unconventional ferroelectricity and the electronic ratchet effect. Yet, the understanding of the electronic properties of BLG/hBN MS has, at present, remained fairly limited. Here, we combine magneto-transport and low-energy sub-THz excitation to gain insights into the properties of this MS. We demonstrate that the alignment between BLG and hBN crystal lattices results in the emergence of compensated semimetals at some integer fillings of the moiré bands, separated by van Hove singularities where the Lifshitz transition occurs. A particularly pronounced semimetal develops when eight holes reside in the moiré unit cell, where coexisting high-mobility electron and hole systems feature strong magnetoresistance reaching 2350% already at B = 0.25 T. Next, by measuring the THz-driven Nernst effect in remote bands, we observe valley splitting, indicating an orbital magnetization characterized by a strongly enhanced effective gv-factor of 340. Finally, using THz photoresistance measurements, we show that the high-temperature conductivity of the BLG/hBN MS is limited by electron-electron umklapp processes. Our multifaceted analysis introduces THz-driven magnetotransport as a convenient tool to probe the band structure and interaction effects in van der Waals materials and provides a comprehensive understanding of the BLG/hBN MS.
Artur L. Shilov, M. A. Kashchenko, Pierre A. Pantaleón, Yibo Wang, Mikhail Kravtsov, Andrei Kudriashov, Zhen Zhan, Takashi Taniguchi, Kenji Watanabe, Sergey Slizovskiy, Konstantin ‘kostya’ Novoselov, Vladimir I. Fal’ko, F. Guinea, D. A. Bandurin (2024). High-Mobility Compensated Semimetals, Orbital Magnetization, and Umklapp Scattering in Bilayer Graphene Moiré Superlattices. ACS Nano, 18(18), pp. 11769-11777, DOI: 10.1021/acsnano.3c13212.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
14
Datasets
0
Total Files
0
Language
English
Journal
ACS Nano
DOI
10.1021/acsnano.3c13212
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access