0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHigh gas barrier rubber composites are crucial for the applications requiring the combination of high resilience and gas impermeability. Layered fillers are commonly used to enhance the gas barrier performance by reducing free volume and creating tortuous gas diffusion paths. However, it remains challenging to strengthen interfacial interactions and manipulate filler distribution, which significantly affect free volume and gas diffusion paths. Herein, we present a facile strategy to build a segregated structure in modified rubber composites with dynamic interfacial cross-linking toward mechanically robust, high gas barrier elastomer composites. Concretely, boehmite (BM) nanoplatelets modified with biobased phytic acid (PA) are utilized to cross-link epoxidized natural rubber (ENR), forming dynamic β-hydroxy phosphate ester cross-links for strong interfacial interaction. This system allows a segregated structure to be readily established by hot pressing the compounds containing ENR gum, PA-modified BM, precross-linked ENR granules and zinc acetate. The volume exclusion effect of ENR granules drives the selective dispersion of BM, generating a two-phase segregated structure with the bridged interfaces across phases formed via bond exchange of dynamic cross-links. This results in excellent gas barrier performance along with distinctly improved mechanical properties. Notably, the N2 permeability of the segregated composites is reduced by 90% to 4.23 × 10–19 m3·m/(m2·s·Pa) compared to neat ENR. Additionally, improved fire safety is achieved benefiting from the combined effects of PA, BM, and the segregated structure. This work offers a promising and scalable approach for fabricating high-performance elastomer composites that combine outstanding gas barrier properties, mechanical durability and flame retardance, making them suitable for a wide range of demanding applications.
Yikai Sun, Chengfeng Zhang, Shu Wang, Zhenghai Tang, X.P. Li, Xianming Zhang, Guo Baochun (2024). High Gas Barrier Elastomer/Boehmite Composites with Mechanical Robustness and Improved Flame Retardance Enabled by Segregated Structure with Interfacial Dynamic Cross-Links. Macromolecules, DOI: 10.1021/acs.macromol.4c02104.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Macromolecules
DOI
10.1021/acs.macromol.4c02104
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access