0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNiO is an interesting transition metal oxide due to its fascinating properties. High crystalline thin films of NiO are preferred for use in a variety of device applications but are challenging to deposit at low temperatures. We have prepared epitaxial thin films of NiO with [111] as the preferred growth direction on a c-plane sapphire substrate at relatively low temperatures using plasma-enhanced atomic layer deposition (PEALD) exploiting a simple nickel precursor with oxygen plasma. The evolution of crystallinity and surface morphology of the films were studied as a function of substrate temperature. Ultra-smooth NiO films with excellent crystallinity were prepared at 250 °C without the necessity for post-annealing. Different microscopic and spectroscopic methods revealed film characteristics. The magnetic properties of (111) oriented epitaxial NiO films prepared using PEALD are explored for the first time, and they are antiferromagnetic in nature.
Rohit Attri, Debendra Prasad Panda, J. Ghatak, Cnr Rao (2023). High crystalline epitaxial thin films of NiO by plasma-enhanced ALD and their properties. APL Materials, 11(9), DOI: 10.1063/5.0157628.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
APL Materials
DOI
10.1063/5.0157628
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access