0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper investigates the evolution of cooperation and the emergence of hierarchical leadership structure in random regular graphs. It is found that there exist different learning patterns between cooperators and defectors, and cooperators are able to attract more followers and hence more likely to become leaders. Hence, the heterogeneous distributions of reputation and leadership can emerge from homogeneous random graphs. The important directed game-learning skeleton is then studied, revealing some important structural properties, such as the heavy-tailed degree distribution and the positive in-in degree correlation.
Zhihai Rong, Zhi-Xi Wu, Xiang Li, Petter Holme, Guanrong Chen (2019). Heterogeneous cooperative leadership structure emerging from random regular graphs. Chaos An Interdisciplinary Journal of Nonlinear Science, 29(10), DOI: 10.1063/1.5120349.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Chaos An Interdisciplinary Journal of Nonlinear Science
DOI
10.1063/1.5120349
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access