0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHeat transfer of a nanofluid flow which is squeezed between parallel plates is investigated analytically using homotopy perturbation method (HPM). Copper as nanoparticle with water as its base fluid has been considered. The effective thermal conductivity and viscosity of nanofluid are calculated by the Maxwell–Garnetts (MG) and Brinkman models, respectively. This investigation is compared with other numerical methods and they were found to be in excellent agreement. The effects of the squeeze number, the nanofluid volume fraction and Eckert number and δ on Nusselt number are investigated. The results show that Nusselt number has direct relationship with nanoparticle volume fraction, δ, the squeeze number and Eckert number when two plates are separated but it has reverse relationship with the squeeze number when two plates are squeezed.
Mohsen Sheikholeslami, D.D. Ganji (2012). Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technology, 235, pp. 873-879, DOI: 10.1016/j.powtec.2012.11.030.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
Powder Technology
DOI
10.1016/j.powtec.2012.11.030
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access