0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDue to the push for carbon neutrality in various human activities, the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant. Also, the challenge lies in achieving microwatt‐scale outputs due to the inherent conductivity of the materials and diverting electric currents. To address this challenge, our research has concentrated on utilizing nonconductive mediums for water‐based low‐cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation. The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer. This occurrence bears resemblance to the natural water transpiration in plants, thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner. The generator module demonstrated in this study, measuring 12 × 6 cm 2 , exhibited a noteworthy open‐circuit voltage of 0.35 V, coupled with a short‐circuit current of 0.51 mA. Such low‐cost ceramic wools are suitable for ubiquitous, permanent energy sources and hold potential for use as self‐powered sensors and systems, eliminating the requirement for external energy sources such as sunlight or heat.
Manpreet Kaur, Avinash Alagumalai, Omid Mahian, Sameh M. Osman, Tadaaki Nagao, Zhong Lin Wang (2024). Harvesting Energy Via Water Movement and Surface Ionics in Microfibrous Ceramic Wools. , 7(6), DOI: https://doi.org/10.1002/eem2.12760.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/eem2.12760
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration