0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessVibration is one of the most common energy sources in ambient environment. Harvesting vibration energy is a promising route to sustainably drive small electronics. This work introduces an approach to scavenge vibrational energy over a wide frequency range as an exclusive power source for continuous operation of electronics. An elastic multiunit triboelectric nanogenerator (TENG) is rationally designed to efficiently harvest low-frequency vibration energy, which can provide a maximum instantaneous output power density of 102 W·m–3 at as low as 7 Hz and maintain its stable current outputs from 5 to 25 Hz. A self-charging power unit (SCPU) combining the TENG and a 10 mF supercapacitor gives a continuous direct current (DC) power delivery of 1.14 mW at a power management efficiency of 45.6% at 20 Hz. The performance of the SCPU can be further enhanced by a specially designed power management circuit, with a continuous DC power of 2 mW and power management efficiency of 60% at 7 Hz. Electronics such as a thermometer, hygrometer, and speedometer can be sustainably powered solely by the harvested vibration energy from a machine or riding bicycle. This approach has potential applications in self-powered systems for environment monitoring, machine safety, and transportation.
Xiaofeng Wang, Simiao Niu, Yi Fang, Yajiang Yin, Chenglong Hao, Keren Dai, Yue Zhang, Zheng You, Zhong Lin Wang (2017). Harvesting Ambient Vibration Energy over a Wide Frequency Range for Self-Powered Electronics. , 11(2), DOI: https://doi.org/10.1021/acsnano.6b07633.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.6b07633
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access