0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSteel plate bolted connections are frequently used in timber structures. However, these connections may incur durability problem due to the corrosion of the steel plates. This paper proposes using GFRP plate to replace steel plate in timber connections to mitigate the corrosion issue. The group effect of the proposed GFRP-timber bolted connection is studied. Tensile tests of GFRP-timber bolted connections were conducted considering a number of variables including bolt diameter, bolt pitch distance, bolt row number, bolt column number. The failure modes and the load–displacement curves of the connections were reported. Experimental results showed that the group effect of the GFRP-timber bolted connection is strongly affected by the bolt diameter and number of bolts, but little affected by bolt pitch distance. The effect of the number of bolt columns on the group effect was also discovered and quantified. The design equation of the timber bolted connection in Eurocode 5 was modified considering the effects of various parameters. The modified equation was then verified using the experimental data in this paper. Finally, detailed recommendations were provided for the design of the proposed GFRP-timber bolted connection.
Chao Wu, Zhang Zi-xiao, Lik‐ho Tam, Peng Feng, Li He (2021). Group effect of GFRP-timber bolted connections in tension. Composite Structures, 262, pp. 113637-113637, DOI: 10.1016/j.compstruct.2021.113637.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Composite Structures
DOI
10.1016/j.compstruct.2021.113637
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access