RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Greenhouse gas production, diffusion and consumption in a soil profile under maize and wheat production

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Greenhouse gas production, diffusion and consumption in a soil profile under maize and wheat production

0 Datasets

0 Files

English
2022
Geoderma
Vol 430
DOI: 10.1016/j.geoderma.2022.116310

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Erik S. Button
Miles R. Marshall
Antonio Rafael Sánchez‐Rodríguez
+4 more

Abstract

Agricultural soil emissions are a balance between sinks and sources of greenhouse gases (GHGs). The fluxes of GHGs from soils are complex and spatially and temporally heterogenous. While the soil surface is the exchange site with the atmosphere and is commonly where GHG fluxes are measured, it is important to consider processes occurring throughout the soil profile. To reduce emissions and improve agricultural sustainability we need to better understand the drivers and dynamics (production, consumption, diffusion) of these gases within the soil profile. Due to the heterogeneous nature of GHG processes at small to large scales, it is important to test how these processes differ with depth in different systems. In this study, we measured in situ CO2, N2O and CH4 concentration gradients as a function of soil depth over subsequent maize and wheat growing seasons with active gas samplers inserted into an arable field at 10, 20, 30 and 50 cm depths. We found N2O and CH4 concentrations increased with depth, but only CO2 concentrations differed with depth between growing seasons due likely to differences in soil diffusivity driven by soil conditions. Using the concentration gradient method (GM), the CO2 fluxes at each depth and their contribution to the surface flux were calculated and validated against a chamber method (CM) measured surface flux. We found the GM estimated surface CO2 flux was only 6 % different in the wheat, but 28 % lower than the surface measured flux in the maize growing season, due to drought conditions reducing the accuracy of the GM. Finally, we measured fluxes of CO2, N2O and CH4 in ambient and highly concentrated headspaces in laboratory mesocosms over a 72 h incubation period. We provide evidence of depth dependent CH4 oxidation and N2O consumption and possibly CO2 fixation. In conclusion, our study provides valuable information on the applicability of the GM and further evidence of the GHG production, consumption and diffusion mechanisms that occur deeper in the soil in a temperate arable context.

How to cite this publication

Erik S. Button, Miles R. Marshall, Antonio Rafael Sánchez‐Rodríguez, Aimeric Blaud, Maïder Abadie, David R. Chadwick, Davey L Jones (2022). Greenhouse gas production, diffusion and consumption in a soil profile under maize and wheat production. Geoderma, 430, pp. 116310-116310, DOI: 10.1016/j.geoderma.2022.116310.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Geoderma

DOI

10.1016/j.geoderma.2022.116310

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access