RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. GeoSPM: Geostatistical parametric mapping for medicine

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2022

GeoSPM: Geostatistical parametric mapping for medicine

0 Datasets

0 Files

en
2022
DOI: 10.48550/arxiv.2204.02354arxiv.org/abs/2204.02354

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Karl Friston
Karl Friston

University College London

Verified
Holger Engleitner
Ashwani Jha
Marta Suárez‐Pinilla
+6 more

Abstract

The characteristics and determinants of health and disease are often organised in space, reflecting our spatially extended nature. Understanding the influence of such factors requires models capable of capturing spatial relations. Though a mature discipline, spatial analysis is comparatively rare in medicine, arguably a consequence of the complexity of the domain and the inclemency of the data regimes that govern it. Drawing on statistical parametric mapping, a framework for topological inference well-established in the realm of neuroimaging, we propose and validate a novel approach to the spatial analysis of diverse clinical data - GeoSPM - based on differential geometry and random field theory. We evaluate GeoSPM across an extensive array of synthetic simulations encompassing diverse spatial relationships, sampling, and corruption by noise, and demonstrate its application on large-scale data from UK Biobank. GeoSPM is transparently interpretable, can be implemented with ease by non-specialists, enables flexible modelling of complex spatial relations, exhibits robustness to noise and under-sampling, offers well-founded criteria of statistical significance, and is through computational efficiency readily scalable to large datasets. We provide a complete, open-source software implementation of GeoSPM, and suggest that its adoption could catalyse the wider use of spatial analysis across the many aspects of medicine that urgently demand it.

How to cite this publication

Holger Engleitner, Ashwani Jha, Marta Suárez‐Pinilla, Amy Nelson, Daniel M. Herron, Geraint Rees, Karl Friston, Martin N. Rossor, Parashkev Nachev (2022). GeoSPM: Geostatistical parametric mapping for medicine. , DOI: https://doi.org/10.48550/arxiv.2204.02354.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2022

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.48550/arxiv.2204.02354

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access