0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRoom-temperature, bottom-gate, field-effect transistor characteristics of 2D ultrathin layer GaS and GaSe prepared from the bulk crystals using a micromechanical cleavage technique are reported. The transistors based on active GaS and GaSe ultrathin layers demonstrate typical n-and p-type conductance transistor operation along with a good ON/OFF ratio and electron differential mobility. Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
Dattatray J. Late, Bin Liu, Jiajun Luo, Aiming Yan, H. S. S. Ramakrishna Matte, M. Grayson, Cnr Rao, Vinayak P. Dravid (2012). GaS and GaSe Ultrathin Layer Transistors. Advanced Materials, 24(26), pp. 3549-3554, DOI: 10.1002/adma.201201361.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Advanced Materials
DOI
10.1002/adma.201201361
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access