0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Implantable medical devices provide an effective therapeutic approach for neurological and cardiovascular diseases. With the development of transient electronics, a new power source with biocompatibility, controllability, and bioabsorbability becomes an urgent demand for medical sciences. Here, various fully bioabsorbable natural‐materials‐based triboelectric nanogenerators (BN‐TENGs), in vivo, are developed. The “triboelectric series” of five natural materials is first ranked, it provides a basic knowledge for materials selection and device design of the TENGs and other energy harvesters. Various triboelectric outputs of these natural materials are achieved by a single material and their pairwise combinations. The maximum voltage, current, and power density reach up to 55 V, 0.6 µA, and 21.6 mW m −2 , respectively. The modification of silk fibroin encapsulation film makes the operation time of the BN‐TENG tunable from days to weeks. After completing its function, the BN‐TENG can be fully degraded and resorbed in Sprague–Dawley rats, which avoids a second operation and other side effects. Using the proposed BN‐TENG as a voltage source, the beating rates of dysfunctional cardiomyocyte clusters are accelerated and the consistency of cell contraction is improved. This provides a new and valid solution to treat some heart diseases such as bradycardia and arrhythmia.
Wen Jiang, Hu Li, Zhuo Liu, Zhe Li, Jingjing Tian, Bojing Shi, Yang Zou, Han Ouyang, Chaochao Zhao, Luming Zhao, Rong Sun, Hairong Zheng, Yubo Fan, Zhong Lin Wang, Zhou Li (2018). Fully Bioabsorbable Natural‐Materials‐Based Triboelectric Nanogenerators. , 30(32), DOI: https://doi.org/10.1002/adma.201801895.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
15
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adma.201801895
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access