RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Fully Bioabsorbable Natural‐Materials‐Based Triboelectric Nanogenerators

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2018

Fully Bioabsorbable Natural‐Materials‐Based Triboelectric Nanogenerators

0 Datasets

0 Files

en
2018
Vol 30 (32)
Vol. 30
DOI: 10.1002/adma.201801895

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Wen Jiang
Hu Li
Zhuo Liu
+12 more

Abstract

Abstract Implantable medical devices provide an effective therapeutic approach for neurological and cardiovascular diseases. With the development of transient electronics, a new power source with biocompatibility, controllability, and bioabsorbability becomes an urgent demand for medical sciences. Here, various fully bioabsorbable natural‐materials‐based triboelectric nanogenerators (BN‐TENGs), in vivo, are developed. The “triboelectric series” of five natural materials is first ranked, it provides a basic knowledge for materials selection and device design of the TENGs and other energy harvesters. Various triboelectric outputs of these natural materials are achieved by a single material and their pairwise combinations. The maximum voltage, current, and power density reach up to 55 V, 0.6 µA, and 21.6 mW m −2 , respectively. The modification of silk fibroin encapsulation film makes the operation time of the BN‐TENG tunable from days to weeks. After completing its function, the BN‐TENG can be fully degraded and resorbed in Sprague–Dawley rats, which avoids a second operation and other side effects. Using the proposed BN‐TENG as a voltage source, the beating rates of dysfunctional cardiomyocyte clusters are accelerated and the consistency of cell contraction is improved. This provides a new and valid solution to treat some heart diseases such as bradycardia and arrhythmia.

How to cite this publication

Wen Jiang, Hu Li, Zhuo Liu, Zhe Li, Jingjing Tian, Bojing Shi, Yang Zou, Han Ouyang, Chaochao Zhao, Luming Zhao, Rong Sun, Hairong Zheng, Yubo Fan, Zhong Lin Wang, Zhou Li (2018). Fully Bioabsorbable Natural‐Materials‐Based Triboelectric Nanogenerators. , 30(32), DOI: https://doi.org/10.1002/adma.201801895.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

15

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adma.201801895

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access