Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Full vectorial model for quantum optics in three-dimensional photonic crystals

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2001

Full vectorial model for quantum optics in three-dimensional photonic crystals

0 Datasets

0 Files

en
2001
Vol 63 (4)
Vol. 63
DOI: 10.1103/physreva.63.043817

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Zhiyuan Li
Younan Xia

Abstract

A theoretical model that takes into full account the vectorial nature of electromagnetic (EM) fields is developed to investigate various types of quantum electrodynamics (QED) in a three-dimensional (3D) photonic crystal. The EM fields are quantized via solving the eigenproblem of photonic crystals with the use of a plane-wave expansion method. It is found that the light-atom coupling coefficients strongly depend on the Bloch states, and the key physical function concerning the atomic QED is the photon local density of states (LDOS) instead of the DOS. Both the DOS and the LDOS vary slowly near the band edge and no singularity takes place. This vectorial model show that the spontaneous emission from a two-level atom can be solved via the conventional Weisskopf-Wigner approximation theory, which exhibits a pure exponential decay behavior with a rate proportional to the LDOS. The quantum interference effect from a three-level atom is greatly weakened at the band edge, instead of enhanced. Neglecting this vectorial nature will lead to many discrepancies in understanding quantum optics in 3D photonic crystals and other inhomogeneous media.

How to cite this publication

Zhiyuan Li, Younan Xia (2001). Full vectorial model for quantum optics in three-dimensional photonic crystals. , 63(4), DOI: https://doi.org/10.1103/physreva.63.043817.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2001

Authors

2

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1103/physreva.63.043817

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration