0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNanometer-scale crystals of the two-dimensional oxide molybdenum trioxide (MoO3) were formed atop the transition metal dichalcogenides MoS2 and MoSe2. The MoO3 nanocrystals are partially commensurate with the dichalcogenide substrates, being aligned only along one of the substrate's crystallographic axes. These nanocrystals can be slid only along the aligned direction and maintain their alignment with the substrate during motion. Using an AFM probe to oscillate the nanocrystals, it was found that the lateral force required to move them increased linearly with nanocrystal area. The slope of this curve, the interfacial shear strength, was significantly lower than for macroscale systems. It also depended strongly on the duration and the velocity of sliding of the crystal, suggesting a thermal activation model for the system. Finally, it was found that lower commensuration between the nanocrystal and the substrate increased the interfacial shear, a trend opposite that predicted theoretically.
Paul E. Sheehan, Charles M. Lieber (2017). Friction between van der Waals Solids during Lattice Directed Sliding. Nano Letters, 17(7), pp. 4116-4121, DOI: 10.1021/acs.nanolett.7b00871.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
Nano Letters
DOI
10.1021/acs.nanolett.7b00871
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access