0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Damped outrigger system is effective for improving energy dissipation for tall buildings. However, conventional damped outrigger (CDO) system with viscous damping has two limitations: (i) its maximum damping ratio cannot be improved when outrigger/column stiffness is inadequate; (ii) different modes achieve their maximum damping ratios at different outrigger damping values, and thus the dampers cannot be optimized to simultaneously reduce vibrations of multiple modes of concern to their minimum. In this paper, a purely frequency‐independent negative stiffness damped outrigger (FI‐NSDO) system is proposed by combining frequency‐independent damper (FID) and negative stiffness device (NSD). The damped outrigger with FID can achieve the maximum damping ratio for all modes as compared to frequency‐dependent damper like viscous damper. As the NSD has the features of assisting and enhancing motion and frequency‐independence, the utilization of NSD will considerably improve the maximum damping ratios when outrigger/column stiffness is inadequate and maintain the frequency‐independent feature of the whole system. Therefore, the FI‐NSDO has the capability of simultaneously increasing the damping ratios of all target modes to their maximum values. Analysis in frequency domain and time domain, demonstrate that the proposed FI‐NSDO performs better in controlling the multi‐mode vibration of seismic responses.
Meng Wang, Fei‐Fei Sun, Yuji Koetaka, Lin Chen, Satish Nagarajaiah, Xiuli Du (2023). Frequency independent damped outrigger systems for multi‐mode seismic control of super tall buildings with frequency independent negative stiffness enhancement. , 52(9), DOI: https://doi.org/10.1002/eqe.3891.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/eqe.3891
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access