0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe presented a novel technique to design microlens optical beam homogenizing system for excimer lasers. As a new approach by applying freeform surface microlens array, the homogenizer can yield somehow superior beam shaping results with larger but less microlens units than conventional method. With new concept and design, the diffraction effects at the microlens apertures can be reduced substantially. Large scale and highly uniform beam profile can be realized at a relative nearby working distance after beam shaping. This is hard to achieve by conventional method. Our design method takes the real spatial energy characteristics of the excimer laser beam as the design basis, and combined with feasible optimization method. The design method is demonstrated as a real instance based, on a 193 nm ArF excimer laser in our laboratory. Moreover, to verify the effectiveness of our method, the designed freeform microlens array homogenizer has been fabricated and tested experimentally. The experimental optical performance of the homogenizer coincides well with the theoretical simulation.
Yuhua Jin, Ali Hassan, Yijian Jiang (2016). Freeform microlens array homogenizer for excimer laser beam shaping. Optics Express, 24(22), pp. 24846-24846, DOI: 10.1364/oe.24.024846.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Optics Express
DOI
10.1364/oe.24.024846
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access