0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free Access. This paper proposes a fractal-based technique for simulating multivariate nonstationary wind speed fields by the stochastic Weierstrass Mandelbrot function. Upon conducting a systematic fractal analysis, it was found that the structure function method is more suitable and reliable than the box counting method, variation method, and R/S analysis method for estimating the fractal dimension of the stochastic wind speed series. Wind field measurement at the meteorological gradient tower with a height of 356 m in Shenzhen was conducted during Typhoon Mangkhut (2018). Significant non-stationary properties and fractal dimensions of typhoon wind speed data at various heights were analyzed and used to demonstrate the effectiveness of the proposed multivariate typhoon wind speed simulation method. The multivariate wind speed components simulated by the proposed fractal-based method are in good agreement with the measured records in terms of the fractal dimension, standard deviation, probability density function, wind spectrum and cross-correlation coefficient.
Kang Cai, Mingfeng Huang, Qiang� Li, Qing Wang, Yong Chen, Lizhong Wang (2023). Fractal-based numerical simulation of multivariate typhoon wind speeds utilizing Weierstrass Mandelbrot function. , DOI: 10.5194/wes-2023-91.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
English
DOI
10.5194/wes-2023-91
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access