0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNanofluid forced convective heat transfer in a porous semi-annulus is studied in presence of uniform magnetic field. Various shapes of nanoparticles are considered. Brownian motion impact on viscosity of nanofluid is taken into account. Governing equations are presented in vorticity stream function formulation. Control volume based finite element method (CVFEM) is utilized to obtain the results. At first, the best shape of nanoparticles is selected and then influences of nanofluid volume fraction, Darcy, Reynolds and Hartmann numbers are presented. Results showed that velocity of nanofluid enhances with increase of Darcy and Reynolds numbers. Platelet shape has the highest rate of heat transfer. Nusselt number enhances with increase of nanofluid volume fraction, Darcy, and Reynolds number while it reduces with increase of Lorentz forces.
Mohsen Sheikholeslami, M. M. Bhatti (2017). Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. International Journal of Heat and Mass Transfer, 111, pp. 1039-1049, DOI: 10.1016/j.ijheatmasstransfer.2017.04.070.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
International Journal of Heat and Mass Transfer
DOI
10.1016/j.ijheatmasstransfer.2017.04.070
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access