RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Flexible Self-Powered GaN Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2015

Flexible Self-Powered GaN Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio

0 Datasets

0 Files

en
2015
Vol 10 (1)
Vol. 10
DOI: 10.1021/acsnano.5b07217

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Mingzeng Peng
Yudong Liu
Aifang Yu
+9 more

Abstract

Flexible self-powered sensing is urgently needed for wearable, portable, sustainable, maintenance-free and long-term applications. Here, we developed a flexible and self-powered GaN membrane-based ultraviolet (UV) photoswitch with high on/off ratio and excellent sensitivity. Even without any power supply, the driving force of UV photogenerated carriers can be well boosted by the combination of both built-in electric field and piezoelectric polarization field. The asymmetric metal-semiconductor-metal structure has been elaborately utilized to enhance the carrier separation and transport for highly sensitive UV photoresponse. Its UV on/off ratio and detection sensitivity reach to 4.67 × 10(5) and 1.78 × 10(12) cm·Hz(0.5) W(1-), respectively. Due to its excellent mechanical flexibility, the piezoelectric polarization field in GaN membrane can be easily tuned/controlled based on piezo-phototronic effect. Under 1% strain, a stronger and broader depletion region can be obtained to further enhance UV on/off ratio up to 154%. As a result, our research can not only provide a deep understanding of local electric field effects on self-powered optoelectronic detection, but also promote the development of self-powered flexible optoelectronic devices and integrated systems.

How to cite this publication

Mingzeng Peng, Yudong Liu, Aifang Yu, Yang Zhang, Caihong Liu, Jingyu Liu, Wei Wu, Ke Zhang, Xieqing Shi, Jinzong Kou, Junyi Zhai, Zhong Lin Wang (2015). Flexible Self-Powered GaN Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio. , 10(1), DOI: https://doi.org/10.1021/acsnano.5b07217.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2015

Authors

12

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acsnano.5b07217

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access