RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Flexible electrical recording from cells using nanowire transistor arrays

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2009

Flexible electrical recording from cells using nanowire transistor arrays

0 Datasets

0 Files

English
2009
Proceedings of the National Academy of Sciences
Vol 106 (18)
DOI: 10.1073/pnas.0902752106

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Charles M. Lieber
Charles M. Lieber

Harvard University

Verified
Tzahi Cohen‐Karni
Brian P. Timko
Lucien E. Weiss
+1 more

Abstract

Semiconductor nanowires (NWs) have unique electronic properties and sizes comparable with biological structures involved in cellular communication, thus making them promising nanostructures for establishing active interfaces with biological systems. We report a flexible approach to interface NW field-effect transistors (NWFETs) with cells and demonstrate this for silicon NWFET arrays coupled to embryonic chicken cardiomyocytes. Cardiomyocyte cells were cultured on thin, optically transparent polydimethylsiloxane (PDMS) sheets and then brought into contact with Si-NWFET arrays fabricated on standard substrates. NWFET conductance signals recorded from cardiomyocytes exhibited excellent signal-to-noise ratios with values routinely >5 and signal amplitudes that were tuned by varying device sensitivity through changes in water gate-voltage potential, V(g). Signals recorded from cardiomyocytes for V(g) from -0.5 to +0.1 V exhibited amplitude variations from 31 to 7 nS whereas the calibrated voltage remained constant, indicating a robust NWFET/cell interface. In addition, signals recorded as a function of increasing/decreasing displacement of the PDMS/cell support to the device chip showed a reversible >2x increase in signal amplitude (calibrated voltage) from 31 nS (1.0 mV) to 72 nS (2.3 mV). Studies with the displacement close to but below the point of cell disruption yielded calibrated signal amplitudes as large as 10.5 +/- 0.2 mV. Last, multiplexed recording of signals from NWFET arrays interfaced to cardiomyocyte monolayers enabled temporal shifts and signal propagation to be determined with good spatial and temporal resolution. Our modular approach simplifies the process of interfacing cardiomyocytes and other cells to high-performance Si-NWFETs, thus increasing the experimental versatility of NWFET arrays and enabling device registration at the subcellular level.

How to cite this publication

Tzahi Cohen‐Karni, Brian P. Timko, Lucien E. Weiss, Charles M. Lieber (2009). Flexible electrical recording from cells using nanowire transistor arrays. Proceedings of the National Academy of Sciences, 106(18), pp. 7309-7313, DOI: 10.1073/pnas.0902752106.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2009

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.0902752106

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access