0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this paper, we study the problem of finite-time consensus of multiagent systems on a fixed directed interaction graph with a new protocol. Existing finite-time consensus protocols can be divided into two types: 1) continuous and 2) discontinuous, which were studied separately in the past. In this paper, we deal with both continuous and discontinuous protocols simultaneously, and design a centralized switching consensus protocol such that the finite-time consensus can be realized in a fast speed. The switching protocol depends on the range of the initial disagreement of the agents, for which we derive an exact bound to indicate at what time a continuous or a discontinuous protocol should be selected to use. Finally, we provide two numerical examples to illustrate the superiority of the proposed protocol and design method.
Xiaoyang Liu, James Lam, Wenwu Yu, Guanrong Chen (2015). Finite-Time Consensus of Multiagent Systems With a Switching Protocol. IEEE Transactions on Neural Networks and Learning Systems, 27(4), pp. 853-862, DOI: 10.1109/tnnls.2015.2425933.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Neural Networks and Learning Systems
DOI
10.1109/tnnls.2015.2425933
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access