0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this paper, influence of an external magnetic field on ferrofluid flow and heat transfer in a semi annulus enclosure with sinusoidal hot wall is investigated. The governing equations which are derived by considering the both effects of FHD (Ferrohydrodynamic) and MHD (Magnetohydrodynamic) are solved via CVFEM (Control Volume based Finite Element Method). The effects of Rayleigh number, nanoparticle volume fraction, Magnetic number arising from FHD and Hartmann number arising from MHD on the flow and heat transfer characteristics have been examined. Results show that Nusselt number increases with augment of Rayleigh number and nanoparticle volume fraction but it decreases with increase of Hartmann number. Magnetic number has different effect on Nusselt number corresponding to Rayleigh number. Also it can be found that for low Rayleigh number, enhancement in heat transfer is an increasing function of Hartmann number and decreasing function of Magnetic number while opposite trend is observed for high Rayleigh number.
Mohsen Sheikholeslami, D.D. Ganji (2014). Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy, 75, pp. 400-410, DOI: 10.1016/j.energy.2014.07.089.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
Energy
DOI
10.1016/j.energy.2014.07.089
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access