0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDielectric elastomer generator (DEG) is a solid-state electrostatic device with variable capacitance. As an energy harvester, it should be passive, high performance, and fatigue-resistant. However, no such DEGs can satisfy these requirements simultaneously as the high performance strongly depends on a high external voltage and large capacitance change, which are prone to dielectric elastomer film fatigue and failure. In this study, we developed a passive alternating current dielectric elastomer generator (AC-DEG) to reconcile the contradiction and satisfy these requirements. Based on the AC method, a high performance by structural parameters could be obtained with a small capacitance change, which avoids the large capacitance change, and consequently, fatigue and failure. The AC-DEG exhibits energy density of 111 mJ/g with an energy conversion efficiency of 51.8% and charge density of 5.6 mC/m2 per cycle at 1.5 Hz with only a two-fold capacitance change. Furthermore, the AC-DEG can maintain over 100 mJ/g and 4.6 mC/m2 per cycle in a continuous operation for over 7 days (> 1 million cycles) at 1.5 Hz. We developed an integrated device with two AC-DEGs to charge commercial Li-polymer batteries with different capacities. This study provides an effective route for development of DEGs toward practical applications and industrialization.
Zisheng Xu, Jianbo Tan, Haojie Chen, Kui Di, Kunwei Bao, Jinzhan Cheng, Xinjun Xie, Shaodi Zheng, Shizhe Lin, Jiancheng Cai, Tinghai Cheng, Liwu Liu, Zhong Lin Wang, E Shiju (2023). Fatigue-resistant high-performance dielectric elastomer generator in alternating current method. , 109, DOI: https://doi.org/10.1016/j.nanoen.2023.108314.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
14
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.nanoen.2023.108314
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access