0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWire arc additive manufacturing (WAAM) is a metal 3D printing technique well recognised in the construction sector for its high efficiency, cost-effectiveness and flexibility in build scales. However, there remains a lack of fundamental data on the structural performance of WAAM elements, especially regarding their fatigue behaviour. A comprehensive experimental study into the fatigue behaviour of WAAM steel plates has therefore been undertaken and is reported herein. Following geometric and mechanical characterisation, a series of WAAM coupons was tested under uniaxial high-cycle fatigue loading. A total of 75 fatigue tests on both as-built and machined coupons, covering various stress ranges and stress ratios, have been conducted. The fatigue test results were analysed using constant life diagrams (CLDs) and S-N (stress-life) diagrams. The CLDs revealed that the fatigue strength of the as-built WAAM steel was relatively insensitive to the different stress ratios. The S-N diagrams showed that the surface undulations resulted in a reduction of about 35% in the fatigue endurance limit for the as-built WAAM material relative to the machined material, and a reduction of about 60% in fatigue life under the same load level. Preliminary S-N curves were also proposed for the WAAM steel.
Cheng Huang, Lingzhen Li, Niels Pichler, Elyas Ghafoori, Leroy Gardner (2024). Fatigue behaviour of wire arc additively manufactured sheet material. , 57, DOI: https://doi.org/10.1016/j.prostr.2024.03.006.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.prostr.2024.03.006
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access