RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Fatigue Behavior of Cracked High-Strength Steel Plates Strengthened by CFRP Sheets

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2016

Fatigue Behavior of Cracked High-Strength Steel Plates Strengthened by CFRP Sheets

0 Datasets

0 Files

English
2016
Journal of Composites for Construction
Vol 20 (6)
DOI: 10.1061/(asce)cc.1943-5614.0000698

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Peng Feng
Peng Feng

Tsinghua University

Verified
Lili Hu
Xiao Ling Zhao
Peng Feng

Abstract

High strength steel is widely used in buildings, bridges, railways, and other structures. However, limited fatigue experiments have been conducted for cracked high strength steel plates with carbon fiber-reinforced polymer (CFRP) sheets. This paper describes an investigation into the fatigue behavior of unstrengthened and CFRP strengthened cracked Q345, Q460, and Q690 steel plates. First, the mechanical properties of these steels, which are dependent on the chemical composition and metallographic structure, were analyzed. Microalloying was found to refine the grain size and thereby enhance the strength. Second, 10 bare steel plates and nine strengthened steel plates were tested under fatigue loading at different stress ranges and stress levels (defined as the ratio of the maximum stress to the yield stress). For the unstrengthened specimens, the results show that the fatigue behavior at a 175.5 MPa stress range is best for Q690, followed by Q460 and then Q345. However, at the same stress level, the fatigue life of Q690 was shortest, followed by Q460 and then Q345. For the strengthened specimens, different failure modes were observed, and serious debonding occurred in Q690 steel under a 402.5 MPa stress range. CFRP strengthening technology can effectively increase the fatigue life (1.3–3.1 times) for all specimens except the Q690 specimen. The microstructure of the fracture surface was then investigated by scanning electron microscopy (SEM). Finally, a fit of material-related constants in fracture mechanics theory was obtained for the three categories of steel, and the fatigue life was predicted accurately using Paris' law.

How to cite this publication

Lili Hu, Xiao Ling Zhao, Peng Feng (2016). Fatigue Behavior of Cracked High-Strength Steel Plates Strengthened by CFRP Sheets. Journal of Composites for Construction, 20(6), DOI: 10.1061/(asce)cc.1943-5614.0000698.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Journal of Composites for Construction

DOI

10.1061/(asce)cc.1943-5614.0000698

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access