RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Facile Synthesis of Sub-20 nm Silver Nanowires through a Bromide-Mediated Polyol Method

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2016

Facile Synthesis of Sub-20 nm Silver Nanowires through a Bromide-Mediated Polyol Method

0 Datasets

0 Files

en
2016
Vol 10 (8)
Vol. 10
DOI: 10.1021/acsnano.6b03806

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Róbson Rosa da Silva
Miaoxin Yang
Sang‐Il Choi
+7 more

Abstract

Essentially all of the Ag nanowires reported in the literature have sizes larger than 30 nm in diameter. In this article, we report a simple and robust approach to the synthesis of Ag nanowires with diameters below 20 nm and aspect ratios over 1000 using a one-pot polyol method. The Ag nanowires took a penta-twinned structure, and they could be obtained rapidly (<35 min) and in high morphology purity (>85% of the as-obtained solid product) under atmospheric pressure. The key to the success of this synthesis is to restrain the nanowires from lateral growth by employing both Br– ions and poly(vinylpyrrolidone) with a high molecular weight of 1 300 000 g/mol to cap the {100} side faces, together with the use of a syringe pump to slowly introduce AgNO3 into the reaction solution. By optimizing the ratios between the capping agents and AgNO3, we were able to slow down the reduction kinetics and effectively direct the Ag nanowires to grow along the longitudinal direction only. The nanowires showed great mechanical flexibility and could be bent with acute angles without breaking. Because of their small diameters, the transverse localized surface plasmon resonance peak of the Ag nanowires could be pushed down to the ultraviolet region, below 400 nm, making them ideal conductive elements for the fabrication of touch screens, solar cells, and smart windows.

How to cite this publication

Róbson Rosa da Silva, Miaoxin Yang, Sang‐Il Choi, Miaofang Chi, Ming Luo, Chao Zhang, Zhiyuan Li, Pedro H. C. Camargo, Sidney J. L. Ribeiro, Younan Xia (2016). Facile Synthesis of Sub-20 nm Silver Nanowires through a Bromide-Mediated Polyol Method. , 10(8), DOI: https://doi.org/10.1021/acsnano.6b03806.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

10

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acsnano.6b03806

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access