RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Facile Synthesis of Ru Nanoboxes with a Hexagonal Close‐Packed Structure by Templating with Ag Nanocubes and Their Catalytic Properties

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Facile Synthesis of Ru Nanoboxes with a Hexagonal Close‐Packed Structure by Templating with Ag Nanocubes and Their Catalytic Properties

0 Datasets

0 Files

en
2023
Vol 29 (68)
Vol. 29
DOI: 10.1002/chem.202302603

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Hansong Yu
Yong Ding
Peng Wang
+3 more

Abstract

Noble-metal nanoboxes offer an attractive form of nanomaterials for catalytic applications owing to their open structure and highly efficient use of atoms. Herein, we report the facile synthesis of Ag-Ru core-shell nanocubes and then Ru nanoboxes with a hexagonal close-packed (hcp) structure, as well as evaluation of their catalytic activity toward a model hydrogenation reaction. By adding a solution of Ru(acac)3 in ethylene glycol (EG) dropwise to a suspension of silver nanocubes in EG at 170 °C, Ru atoms are generated and deposited onto the entire surface of a nanocube. As the volume of the RuIII precursor is increased, Ru atoms are also produced through a galvanic replacement reaction, generating Ag-Ru nanocubes with a hollow interior. The released Ag+ ions are then reduced by EG and deposited back onto the nanocubes. By selectively etching away the remaining Ag with aqueous HNO3 , the as-obtained Ag-Ru nanocubes are transformed into Ru nanoboxes, whose walls are characterized by an hcp structure and an ultrathin thickness of a few nanometers. Finally, we evaluated the catalytic properties of the Ru nanoboxes with two different wall thicknesses by using a model hydrogenation reaction; both samples showed excellent performance.

How to cite this publication

Hansong Yu, Yong Ding, Peng Wang, Quynh Nguyen, Younan Xia, Dong Qin (2023). Facile Synthesis of Ru Nanoboxes with a Hexagonal Close‐Packed Structure by Templating with Ag Nanocubes and Their Catalytic Properties. , 29(68), DOI: https://doi.org/10.1002/chem.202302603.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/chem.202302603

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access