Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Facet-selective etching trajectories of individual semiconductor nanocrystals

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Facet-selective etching trajectories of individual semiconductor nanocrystals

0 Datasets

0 Files

en
2022
Vol 8 (32)
Vol. 8
DOI: 10.1126/sciadv.abq1700

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Paul Alivisatos
Paul Alivisatos

University of Chicago

Verified
Chang Yan
Dana O. Byrne
Justin C. Ondry
+9 more

Abstract

The size and shape of semiconductor nanocrystals govern their optical and electronic properties. Liquid cell transmission electron microscopy (LCTEM) is an emerging tool that can directly visualize nanoscale chemical transformations and therefore inform the precise synthesis of nanostructures with desired functions. However, it remains difficult to controllably investigate the reactions of semiconductor nanocrystals with LCTEM, because of the highly reactive environment formed by radiolysis of liquid. Here, we harness the radiolysis processes and report the single-particle etching trajectories of prototypical semiconductor nanomaterials with well-defined crystalline facets. Lead selenide nanocubes represent an isotropic structure that retains the cubic shape during etching via a layer-by-layer mechanism. The anisotropic arrow-shaped cadmium selenide nanorods have polar facets terminated by either cadmium or selenium atoms, and the transformation trajectory is driven by etching the selenium-terminated facets. LCTEM trajectories reveal how nanoscale shape transformations of semiconductors are governed by the reactivity of specific facets in liquid environments.

How to cite this publication

Chang Yan, Dana O. Byrne, Justin C. Ondry, Axel Kahnt, Ivan A. Moreno‐Hernandez, Gaurav A. Kamat, Zi-Jie Liu, Christian Laube, Michelle F. Crook, Ye Zhang, Peter Ercius, Paul Alivisatos (2022). Facet-selective etching trajectories of individual semiconductor nanocrystals. , 8(32), DOI: https://doi.org/10.1126/sciadv.abq1700.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

12

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1126/sciadv.abq1700

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access