RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Facet-Controlled Synthesis of Platinum-Group-Metal Quaternary Alloys: The Case of Nanocubes and {100} Facets

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Facet-Controlled Synthesis of Platinum-Group-Metal Quaternary Alloys: The Case of Nanocubes and {100} Facets

0 Datasets

0 Files

en
2022
Vol 145 (4)
Vol. 145
DOI: 10.1021/jacs.2c12368

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Chenxiao Wang
Zhennan Huang
Yong Ding
+3 more

Abstract

We report a robust method for the facet-controlled synthesis of nanocrystals with an ultrathin shell made of a nearly equimolar RuRhPdPt quaternary alloy. Our strategy involves the use of well-defined Rh cubic seeds, halide-free precursors, and a method for precisely controlling the reaction kinetics of different precursors. In the setting of dropwise addition, the precursors with different reactivities can be reduced at about the same pace for the generation of an alloy with a uniform and well-controlled composition. The core-shell nanocubes show greatly enhanced activity toward ethanol oxidation when benchmarked against Pd and Pt counterparts. Combining in situ and ex situ electron microscopy studies, we also demonstrate that the core-shell nanocubes possess good thermal and electrochemical stability in terms of both geometrical shape and elemental composition, with their cubic shape and alloy composition retained when annealing at 500 °C or after long-term electrochemical cycling. It is expected that the synthetic approach can be further extended to fabricate multimetallic catalysts with enhanced activities toward a variety of thermal and electrochemical reactions.

How to cite this publication

Chenxiao Wang, Zhennan Huang, Yong Ding, Minghao Xie, Miaofang Chi, Younan Xia (2022). Facet-Controlled Synthesis of Platinum-Group-Metal Quaternary Alloys: The Case of Nanocubes and {100} Facets. , 145(4), DOI: https://doi.org/10.1021/jacs.2c12368.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/jacs.2c12368

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access