0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper describes a method for fabricating three-dimensional (3D) microfluidic channel systems in poly(dimethylsiloxane) (PDMS) with complex topologies and geometries that include a knot, a spiral channel, a "basketweave" of channels, a chaotic advective mixer, a system with "braided" channels, and a 3D grid of channels. Pseudo-3D channels, which are topologically equivalent to planar channels, are generated by bending corresponding planar channels in PDMS out of the plane into 3D shapes. True 3D channel systems are formed on the basis of the strategy of decomposing these complex networks into substructures that are planar or pseudo-3D. A methodology is developed that connects these planar and/or pseudo-3D structures to generate PDMS channel systems with the original 3D geometry. This technique of joining separate channel structures can also be used to create channel systems in PDMS over large areas by connecting features on different substrates. The channels can be used as templates to form 3D structures in other materials.
Hongkai Wu, Teri W. Odom, Daniel T. Chiu, George M M Whitesides (2002). Fabrication of Complex Three-Dimensional Microchannel Systems in PDMS. , 125(2), DOI: https://doi.org/10.1021/ja021045y.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2002
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/ja021045y
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access