0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe time-varying mean (TVM) component plays a vital role in the characterization of non-stationary winds, whereas it is difficult to extract the TVM accurately or to validate it quantitively. To deal with this problem, this paper first develops two additional conditions for the TVM extraction from the perspective of structural wind-induced vibration response, then presents an approach, based on the combination of Vondrak filter and genetic algorithm (Vondrak-G), to derive the optimal TVM from non-stationary wind speed records as well as its turbulence characteristics (i.e. gust factor, turbulence intensity, and turbulence integral length scale). Furthermore, the wind characteristics obtained by the Vondrak-G approach are compared with those by a conventional approach derived for stationary winds, demonstrating that the results by the Vondrak-G approach are evidently more accurate. This paper aims to provide an effective method for accurately extracting the TVM and then evaluating wind characteristics of the non-stationary wind.
Kang Cai, Xiao Li, Lun Hai Zhi (2021). Extracting Time-Varying Mean Component of Non-Stationary Winds Utilizing Vondrak Filter and Genetic Algorithm: A Wind Engineering Perspective. International Journal of Structural Stability and Dynamics, 21(11), DOI: 10.1142/s0219455421501558.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
International Journal of Structural Stability and Dynamics
DOI
10.1142/s0219455421501558
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access