0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis study utilizes transfer learning (TL) to enhance long-term atmospheric corrosion predictions. Using a Fe/Cu galvanic-type sensor, we gathered data in a controlled SAE J2334 salt spray setting and transferred this to an uncontrolled outdoor environment. Among TL methods tested, freezing the initial layer and fine-tuning others at a lower rate was most effective. The approach excelled at forecasting outdoor corrosion behaviour using a limited dataset. This approach could provide a solution to extrapolate results from controlled corrosion tests to unpredictable outdoor conditions and addressing data scarcity in machine learning modelling in the context of atmospheric corrosion.
Vincent Vangrunderbeek, Leonardo Bertolucci Coelho, Dawei Zhang, Yiran Li, Yves Van Ingelgem, Herman Terryn (2023). Exploring the potential of transfer learning in extrapolating accelerated corrosion test data for long-term atmospheric corrosion forecasting. Corrosion Science, 225, pp. 111619-111619, DOI: 10.1016/j.corsci.2023.111619.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Corrosion Science
DOI
10.1016/j.corsci.2023.111619
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access