RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Experimental validation of the free-energy principle with in vitro neural networks

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Experimental validation of the free-energy principle with in vitro neural networks

0 Datasets

0 Files

en
2023
Vol 14 (1)
Vol. 14
DOI: 10.1038/s41467-023-40141-z

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Karl Friston
Karl Friston

University College London

Verified
Takuya Isomura
Kiyoshi Kotani
Yasuhiko Jimbo
+1 more

Abstract

Abstract Empirical applications of the free-energy principle are not straightforward because they entail a commitment to a particular process theory, especially at the cellular and synaptic levels. Using a recently established reverse engineering technique, we confirm the quantitative predictions of the free-energy principle using in vitro networks of rat cortical neurons that perform causal inference. Upon receiving electrical stimuli—generated by mixing two hidden sources—neurons self-organised to selectively encode the two sources. Pharmacological up- and downregulation of network excitability disrupted the ensuing inference, consistent with changes in prior beliefs about hidden sources. As predicted, changes in effective synaptic connectivity reduced variational free energy, where the connection strengths encoded parameters of the generative model. In short, we show that variational free energy minimisation can quantitatively predict the self-organisation of neuronal networks, in terms of their responses and plasticity. These results demonstrate the applicability of the free-energy principle to in vitro neural networks and establish its predictive validity in this setting.

How to cite this publication

Takuya Isomura, Kiyoshi Kotani, Yasuhiko Jimbo, Karl Friston (2023). Experimental validation of the free-energy principle with in vitro neural networks. , 14(1), DOI: https://doi.org/10.1038/s41467-023-40141-z.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1038/s41467-023-40141-z

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access